Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Gut Liver ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623061

RESUMO

Background/Aims: : The histological characteristics and natural history of precirrhotic primary biliary cholangitis (PBC) with portal hypertension (PH) are unclear. Our aim was to clarify the prevalence, risk factors, and histological characteristics of precirrhotic PBC patients with PH. Methods: : This retrospective study compared the clinical features, histological characteristics, and response to ursodeoxycholic acid (UDCA) between the PH and non-PH groups of precirrhotic PBC patients. Results: : Out of 165 precirrhotic PBC patients, 40 (24.2%) also had PH. According to histological stage 1, 2 and 3 disease, 5.3% (1/19), 17.3% (17/98), and 45.8% (22/48) of patients also had PH, respectively. Precirrhotic PBC with PH was significantly positively correlated with bile duct loss, degree of cytokeratin 7 positivity, and degree of fibrosis in the portal area, but significantly negatively correlated with lymphoid follicular aggregation. Compared to the non-PH group, patients in the PH group showed a higher prevalence of obliterative portal venopathy, incomplete septal fibrosis, portal tract abnormalities and non-zonal sinusoidal dilatation (p<0.05). In addition, patients with PH were more likely to present with symptoms of jaundice, ascites, epigastric discomfort, a poorer response to UDCA, and more decompensation events (p<0.05). High alkaline phosphatase levels, low white blood cell counts, high Mayo scores, and high FIB-4 index values were risk factors for precirrhotic PBC with PH. Conclusions: : Approximately 24.2% of precirrhotic PBC patients have PH, which is histologically related to the injury of bile ducts. High alkaline phosphatase levels, low white blood cell counts, high Mayo scores, and high FIB-4 index values are associated with increased risk of precirrhotic PBC with PH.

2.
Huan Jing Ke Xue ; 45(5): 2871-2880, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629549

RESUMO

Presently, the improvement of soil organic matter is the basis to ensure food security, but the accumulation and transformation characteristics of soil phosphorus (P) as affected by organic matter remain unclear. The accumulation, transformation, and migration characteristics of soil P in different soil layers of vegetable fields were researched under the application of organic materials. Six treatments were set up in the experiment:control (no fertilization), traditional fertilizer application by farmers, biochar, chicken manure, food waste, and straw application. Available phosphorus (Olsen-P), water-soluble phosphorus (CaCl2-P) content, soil phosphorus forms, soil organic matter (SOM), and pH were determined during the pepper harvest period. In the 0-5 cm and 5-10 cm soil layers, the available phosphorus content of traditional fertilization of farmers was higher, and the available phosphorus content of the four organic materials was in the order of straw > biochar > chicken manure > food waste. Compared to that with food waste, the straw and biochar treatments increased soil available phosphorus by 59.6%-67.3% and 29.1%-36.9%, respectively. The straw treatment could easily enhance the soil labile P pool, and soil labile P in the 0-5 cm soil layer increased by 47.3% and 35.1% compared with that under the chicken manure and food waste treatments, respectively. With the increase in soil depth, the proportion of available phosphorus in the chicken manure treatment decreased the least, and available phosphorus of the 20-30 cm soil layer accounted for 55.9% of the topsoil layer but only accounted for 16.0%-34.0% under treatment with the other three materials. Compared with that under the traditional fertilization of farmers, the pH significantly increased by 0.18-0.36 units after the application of organic fertilizer, and the pH of the chicken manure and food waste treatments was significantly higher than that of biochar and straw (P < 0.05). SOM content under the biochar treatment significantly increased by 7.7%-17.6% compared to that under the other three organic materials. Among the four organic materials, the straw treatment boosted the labile P pool the most, which was conducive to the rapid increase in plant-available P. Phosphorus was most likely to migrate downward under the chicken manure treatment. In the field management based on soil fertility enhancement, the application of biochar could not only improve soil pH and SOM but also avoid excessive accumulation of phosphorus in the surface layer, which decreases environmental risks.


Assuntos
Agricultura , Carvão Vegetal , Eliminação de Resíduos , Animais , Fósforo , Verduras , Fertilizantes , Esterco , Solo/química , Galinhas
3.
Macromol Rapid Commun ; : e2400028, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593331

RESUMO

A temperature-responsive surface-enhanced Raman scattering (SERS) substrate with "ON-OFF" switching based on poly(ionic liquid)s (PILs) block copolymer microgels have been designed and synthesized. The PIL units act as a joint component to anchor the gold nanoparticles (AuNPs) and analytes onto poly(N-isopropylacrylamide) (PNIPAm). This anchor allows the analytes to be fixed at the formed hot spots under temperature stimulus. Owing to the regulation of the PNIPAm segment, the SERS substrates exhibit excellent thermally responsive SERS activity with a reversible "ON-OFF" effect. Additionally, because of the anion exchange of PILs, microgels can introduce new analytes, which offers more flexibility for the system. The substrate shows excellent reversibility, controllability, and flexibility of SERS activity, which is expected to have a broad application in the field of practical SERS sensors.

4.
J Hazard Mater ; 470: 134165, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574660

RESUMO

It has been reported that N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), a derivative of the tire antioxidant, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), exhibits acute toxicity towards organisms. However, the possible reproductive toxicity of 6PPD-Q in mammals has rarely been reported. In this study, the effects of 6PPD-Q on the reproductive toxicity of C57Bl/6 male mice were assessed after exposure to 6PPD-Q for 40 days at 4 mg/kg body weight (bw). Exposure to 6PPD-Q not only led to a decrease in testosterone levels but also adversely affected semen quality and in vitro fertilization (IVF) outcomes, thereby indicating impaired male fertility resulting from 6PPD-Q exposure. Additionally, transcriptomic and metabolomic analyses revealed that 6PPD-Q elicited differential expression of genes and metabolites primarily enriched in spermatogenesis, apoptosis, arginine biosynthesis, and sphingolipid metabolism in the testes of mice. In conclusion, our study reveals the toxicity of 6PPD-Q on the reproductive capacity concerning baseline endocrine disorders, sperm quality, germ cell apoptosis, and the sphingolipid signaling pathway in mice. These findings contribute to an enhanced understanding of the health hazards posed by 6PPD-Q to mammals, thereby facilitating the development of more robust safety regulations governing the utilization and disposal of rubber products.

5.
mBio ; : e0053924, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591881

RESUMO

A recent study published in mBio by Cao et al. revealed the crucial roles of bacteria in benefitting SARS-CoV-2 mutations (B. Cao, X. Wang, W. Yin, Z. Gao, and B. Xia, mBio e3187-23, 2024, https://doi.org/10.1128/mbio.03187-23). Understanding the underlying mechanisms driving the evolution of SARS-CoV-2 is crucial for predicting the future trajectory of the COVID-19 pandemic and developing preventive and treatment strategies. This study provides important insights into the rapid and complex evolution of viruses facilitated by bacterial-virus interactions.

6.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589403

RESUMO

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitélio/metabolismo , Morfogênese
7.
PNAS Nexus ; 3(4): pgae118, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595803

RESUMO

Enzymatic humification plays a crucial biogeochemical role in eliminating steroidal estrogens and expanding organic carbon stocks. Estrogenic contaminants in agroecosystems can be taken up and acropetally translocated by crops, but the roles of laccase-triggered rhizospheric humification (L-TRH) in pollutant dissipation and plant uptake remain poorly understood. In this study, the laccase-induced decontamination and humification mechanisms of 17ß-estradiol (E2) in water-crop media were investigated by performing greenhouse pot experiments with maize seedlings (Zea mays L.). The results demonstrated that L-TRH effectively dissipated E2 in the rhizosphere solution and achieved the kinetic constants of E2 dissipation at 10 and 50 µM by 8.05 and 2.75 times as much as the treatments without laccase addition, respectively. The copolymerization of E2 and root exudates (i.e. phenols and amino acids) consolidated by L-TRH produced a larger amount of humified precipitates with the richly functional carbon architectures. The growth parameters and photosynthetic pigment levels of maize seedlings were greatly impeded after a 120-h exposure to 50 µM E2, but L-TRH motivated the detoxication process and thus mitigated the phytotoxicity and bioavailability of E2. The tested E2 contents in the maize tissues initially increased sharply with the cultivation time but decreased steadily. Compared with the treatment without laccase addition, the uptake and accumulation of E2 in the maize tissues were obviously diminished by L-TRH. E2 oligomers such as dimer, trimer, and tetramer recognized in the rhizosphere solution were also detected in the root tissues but not in the shoots, demonstrating that the acropetal translocation of E2 oligomers was interrupted. These results highlight a promising strategy for decontaminating estrogenic pollutants, boosting rhizospheric humification, and realizing low-carbon emissions, which would be beneficial for agroenvironmental bioremediation and sustainability.

8.
Front Oncol ; 14: 1364199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595820

RESUMO

Introduction: Medulloblastoma is the most common malignant brain tumor in children, often requiring intensive multimodal therapy, including chemotherapy with alkylating agents. However, therapy-related complications, such as therapy-related myeloid neoplasms (t-MNs), can arise, particularly in patients with genetic predisposition syndromes. This case report presents three pediatric cases of medulloblastoma with subsequent development of t-MNs, highlighting the potential role of genetic predisposition and the importance of surveillance for hematological abnormalities in long-term survivors. Case presentation: We describe three cases of pediatric medulloblastoma who developed t-MNs after receiving chemotherapy, including alkylating agents. Two of the patients had underlying genetic predisposition syndromes (TP53 pathologic variants). The latency period between initial diagnosis of medulloblastoma and the development of secondary cancer varied among the cases, ranging from 17 to 65 months. The three cases eventually succumbed from secondary malignancy, therapy-related complications and progression of primary disease, respectively. Conclusions: This report highlights the potential association between genetic predisposition syndromes and the development of therapy-related myeloid neoplasms in pediatric medulloblastoma survivors. It underscores the importance of surveillance for hematological abnormalities among such patients.

9.
Front Cardiovasc Med ; 11: 1337679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638885

RESUMO

Biomechanical forces, including vascular shear stress, cyclic stretching, and extracellular matrix stiffness, which influence mechanosensitive channels in the plasma membrane, determine cell function in atherosclerosis. Being highly associated with the formation of atherosclerotic plaques, endocytosis is the key point in molecule and macromolecule trafficking, which plays an important role in lipid transportation. The process of endocytosis relies on the mobility and tension of the plasma membrane, which is sensitive to biomechanical forces. Several studies have advanced the signal transduction between endocytosis and biomechanics to elaborate the developmental role of atherosclerosis. Meanwhile, increased plaque growth also results in changes in the structure, composition and morphology of the coronary artery that contribute to the alteration of arterial biomechanics. These cross-links of biomechanics and endocytosis in atherosclerotic plaques play an important role in cell function, such as cell phenotype switching, foam cell formation, and lipoprotein transportation. We propose that biomechanical force activates the endocytosis of vascular cells and plays an important role in the development of atherosclerosis.

10.
Chem Commun (Camb) ; 60(33): 4463-4466, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563776

RESUMO

Magnetostrictive CoFe2O4 (CFO) nanoparticles were encapsulated within a UiO-66 metal-organic-framework layer to form a CFO@UiO-66 nanohybrid. The deforming of CFO, in response to a high-frequency AC magnetic field, initiates the piezocatalytic property of UiO-66 to generate ˙OH radicals, which can kill cancer cells buried in thick tissues, showcasing bright potential for deep-seated tumor treatment.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Ácidos Ftálicos , Humanos , Campos Magnéticos
11.
Dev Comp Immunol ; : 105181, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636698

RESUMO

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.

12.
Biotechnol J ; 19(4): e2300691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622798

RESUMO

CRISPR/Cas9 technology, combined with somatic cell nuclear transplantation (SCNT), represents the primary approach to generating gene-edited pigs. The inefficiency in acquiring gene-edited nuclear donors is attributed to low editing and delivery efficiency, both closely linked to the selection of CRISPR/Cas9 forms. However, there is currently no direct method to evaluate the efficiency of CRISPR/Cas9 editing in porcine genomes. A platform based on fluorescence reporting signals and micropattern arrays was developed in this study, to visually assess the efficiency of gene editing. The optimal specifications for culturing porcine cells, determined by the quantity and state of cells grown on micropattern arrays, were a diameter of 200 µm and a spacing of 150 µm. By visualizing the area of fluorescence loss and measuring the gray value of the micropattern arrays, it was quickly determined that the mRNA form targeting porcine cells exhibited the highest editing efficiency compared to DNA and Ribonucleoprotein (RNP) forms of CRISPR/Cas9. Subsequently, four homozygotes of the ß4GalNT2 gene knockout were successfully obtained through the mRNA form, laying the groundwork for the subsequent generation of gene-edited pigs. This platform facilitates a quick, simple, and effective evaluation of gene knockout efficiency. Additionally, it holds significant potential for swiftly testing novel gene editing tools, assessing delivery methods, and tailoring evaluation platforms for various cell types.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Suínos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes , Genoma , RNA Mensageiro/genética
13.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582582

RESUMO

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Assuntos
Mariposas , Animais , Mariposas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentação/genética
14.
Angew Chem Int Ed Engl ; : e202403918, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519423

RESUMO

Precise design and tuning of Zn hopping/transfer sites with deeper understanding of the dendrite-formation mechanism is vital in artificial anode protective coating for aqueous Zn-ion batteries (AZIBs). Here, we probe into the role of anode-coating interfaces by designing a series of anhydride-based covalent organic frameworks (i.e., PI-DP-COF and PI-DT-COF) with specifically designed zigzag hopping sites and zincophilic anhydride groups that can serve as desired platforms to investigate the related Zn2+ hopping/transfer behaviours as well as the interfacial interaction. Combining theoretical calculations with experiments, the ABC stacking models of these COFs endow the structures with specific zigzag sites along the 1D channel that can accelerate Zn2+ transfer kinetics, lower surface-energy, homogenize ion-distribution or electric-filed. Attributed to these superiorities, thus-obtained optimal PI-DT-COF cells offer excellent cycling lifespan in both symmetric-cell (2000 cycles at 60 mA cm-2) and full-cell (1600 cycles at 2 A g-1), outperforming almost all the reported porous crystalline materials.

15.
Chem Commun (Camb) ; 60(31): 4186-4189, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530669

RESUMO

Adherent bubbles at electrodes are generally treated as reaction penalties. Herein, in situ hydroxylation of indium tin oxide surfaces can be easily achieved by applying a constant potential of +1.0 V in the presence of bubbles. Its successful hydroxylation is further demonstrated by preparing a ferrocene-terminated film, which is confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy.

16.
Front Microbiol ; 15: 1361883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495510

RESUMO

The plant microbiota is believed to be an accessory genome that extends plant functions, forming holobionts together with the host plant. Plant disease resistance, therefore, is inextricably linked with plant microbiota, which play important roles in plant growth and health. To explore the relationship between plant microbiota and disease resistance, we investigated the tobacco microbiome of two varieties with contrasting disease-resistance levels to bacterial wilt and black shank diseases. Comparative microbiome analysis indicated that the resistant variety assembled a distinct microbiota with higher network complexity and diversity. While Pseudomonas and Ensifer, which contain biocontrol and beneficial members, were enriched in the rhizosphere of the resistant variety, Ralstonia, a genus including the known causative pathogen, was enriched in the susceptible variety. Metagenome sequencing revealed that biocontrol functions, such as hydrogen cyanide synthase, pyochelin biosynthesis, and arthrofactin-type cyclic lipopeptide synthetase, were more abundant in the resistant variety. Further analysis indicated that contigs encoding the corresponding genes were mostly assigned to Pseudomonas. Among all the metagenome-assembled genomes, positive selection was suggested in the genome assigned to Pseudomonas only in the rhizosphere of the resistant variety. The search of biosynthetic gene clusters in the Pseudomonas genome revealed a non-ribosomal peptide synthetase, the compound of which was brabantamide A, with known antimicrobial activity. Collectively, our study suggests that the plant microbiota might be involved in microbe-mediated disease resistance. Particularly, our results highlight Pseudomonas in the rhizosphere of the disease-resistant variety as a promising biocontrol candidate. Our study may facilitate further screening of bacterial isolates and the targeted design of microbial communities.

17.
Angew Chem Int Ed Engl ; : e202402458, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545814

RESUMO

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2%) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

18.
Ying Yong Sheng Tai Xue Bao ; 35(2): 507-515, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523109

RESUMO

Pine wood nematode (PWN) disease is one of the major disasters in forests of southern China, causing substantial forest resources and ecological and economic losses. Based on field surveys and WFV image data from the GF-1 satellite, we constructed a spatial identification model of PWN disease with the random forest model to explore the relative influences of topography, human activities and stand factors on the occurrence of diseases and predict their spatial distribution. We then used the spatial autocorrelation analysis to assess the distribution characteristics of PWN disease at the regional scale. The results showed that the random forest model constructed in this study was effective in identifying pine nematode diseases (AUC value=0.99, overall accuracy=0.96). The norma-lized difference greenness index (NDGI), the distance to the highway, and normalized vegetation index (NDVI) were important factors in explaining the spatial variations of PWN disease occurrence. There was a positive spatial correlation in the occurrence of PWN disease (not randomly distributed but with obvious spatial aggregation characteristics). The high occurrence areas of pine wood nematode disease concentrated in Chitu Township, Zhufang Township and Shibatang Township, low occurrence areas concentrated in the vicinity of Rongjiang Street. The areas far away from the highway, low in elevation, and close to county roads were suffered to PWN disease. The results could serve the regional monitoring of pine nematode disease occurrence and provide practical guidance for PWN disease management.


Assuntos
Nematoides , Pinus , Tylenchida , Animais , Humanos , Doenças das Plantas , China
19.
Natl Sci Rev ; 11(4): nwae036, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440218

RESUMO

This perspective defines and explores an innovative waste heat harvesting strategy, thermoelectrocatalysis (TECatal), emphasizing materials design and potential applications in clean energy, environmental, and biomedical technologies.

20.
Int Immunopharmacol ; 131: 111891, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38498953

RESUMO

Streptococcus equi ssp. zooepidemicus (SEZ) predominantly acts as a zoonotic pathogen, capable of infecting a diverse range of animal species including human. Gasdermin D (GSDMD) exhibited comprehensive functions in host against different pathogenic microorganism. This study aimed to investigate the role of GSDMD in host against SEZ. Mice were administrated with SEZ via intranasal intubation for 24 h (3 × 106CFU), GSDMD protein expression significantly increased in the lung tissue of mice infected with SEZ. For further research on the role of GSDMD during SEZ infection, GSDMD-/- mice and WT mice were treated with SEZ via intranasal intubation for 24 h (3 × 106CFU). GSDMD-/- mice showed less severe lung tissue due to fewer bacteria colonization. Numerous neutrophils were recruited into lung tissues in GSDMD-/- mice, related to the release of CXCL1 and CXCL2 regulated by p65 phosphorylation. In further study, neutrophils of WT and GSDMD-/- mice were isolated and treated with SEZ (multiplicity of infection, MOI = 10, 4 h). The absence of GSDMD alleviated the death of neutrophils, in addition, GSDMD deficiency could promote translocation of p65 from the cytoplasm into the nucleus in neutrophil, which may contribute to the release of IL-1ß and TNF-α. This study demonstrated a novel function of GSDMD in host immune response to SEZ invading, indicating that GSDMD deficiency ameliorated SEZ infection through enhancing neutrophil accumulation into infected site, and activating NF-κB pathway in neutrophil to release cytokines against SEZ. Our study suggested that inhibition of host GSDMD may be an effective method against SEZ.


Assuntos
Neutrófilos , Streptococcus equi , Animais , Humanos , Camundongos , Citocinas , Gasderminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...